

A Visco-hypoplastic model for structured soils

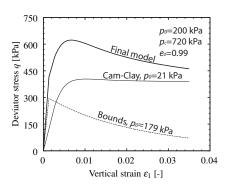
William M. Fuentes

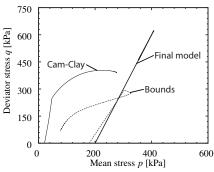
Grupo de Investigación en Geotecnia Universidad de Los Andes-Bogotá, Colombia Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad -CeiBA-

April 3, 2009

Motivation

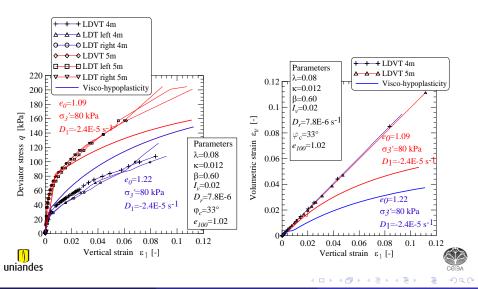
Nova, et.al model: drained triaxial test.





Motivation

Drained triaxial test. Pampean loess sample.



- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Increase in the preconsolidation pressure

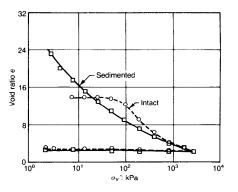
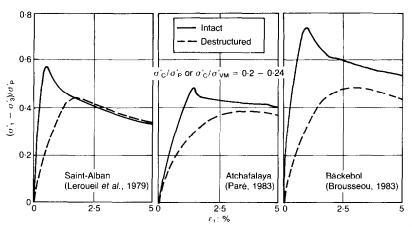


Figure: Oedometric test. Mexico city clay, Mesri (1975)

Increase in strength and stiffness.



Other observations

- Viscous behaviour (Tatsuoka, et.al. 2002; Sorensen, et.al. 2007)
- Anisotropic yielding surface (Nova.et.al. 2001, Leroueil, et.al. 1990)

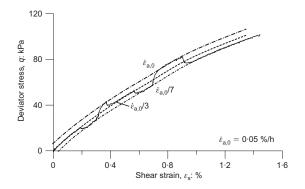


Figure: London clay isotachs, Sorensen, et.al. 2007

8 / 48

Review of Visco-hypoplastic model

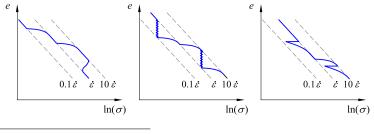
- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Review of Visco-hypoplastic model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Assumptions:

- Decomposition of strains $D = D^{v} + D^{e}$
- Simulates viscous behaviour, $h(\mathbf{T}, \lambda \mathbf{D}) \neq \lambda h(\mathbf{T}, \mathbf{D}) \neq \lambda \overset{\circ}{\mathbf{T}}$.
- Creep, stress relaxation and deformation rate dependence.
- BUTTERFIELD (1979) compression law. $\varepsilon = -\ln \left[\frac{1+e}{1+e_0} \right] = \lambda \ln \left[\frac{T}{T_0} \right]$.



¹As reference model (Niemunis 1996, 2003).

Constitutive equation

Visco-hypoplasticity constitutive equation

$$\overset{\circ}{\mathbf{T}} = f_b \hat{\mathbb{L}} : (\mathbf{D} - \mathbf{D}^v) \tag{1}$$

where,

- ullet $oldsymbol{\check{T}}$ is the ZAREMBA-JAUMMAN objective stress rate tensor.
- D the strain rate tensor.
- D^v viscous strain rate tensor.

Fourth order hypoelastic tensor (Wolffersdorf, 1996):

$$\hat{\mathbb{L}} = a^2 \left(\left(\frac{F}{a} \right)^2 \mathbb{I} + \hat{\mathbf{T}} \otimes \hat{\mathbf{T}} \right) \tag{2}$$

$$\begin{cases} \hat{T} = \frac{\mathbf{T}}{\mathrm{Tr}\left[\mathbf{T}\right]}, & \text{The dimensionless stress tensor;} \\ f_b, & \text{The barotropy factor;} \\ F, a, & \text{Scalar functions which represent the limit surface;} \\ \mathbb{I}_{ijkl} = \frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}), & \text{The fourth order unit tensor for symmetric tensors.} \end{cases}$$

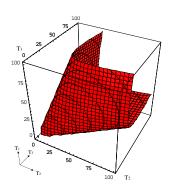
Barotropy factor

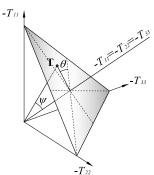
$$f_b = -\frac{\text{tr}\mathbf{T}}{(1+a^2/3)\kappa} = -\beta_b \text{tr}\mathbf{T}$$
 (4)

(3)

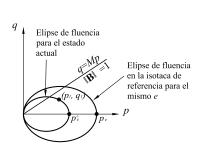
Critical state surface

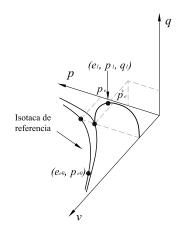
$$\hat{\mathbb{L}} = a^2 \left(\left(rac{F}{a}
ight)^2 \mathbb{I} + \mathbf{\hat{T}} \otimes \mathbf{\hat{T}}
ight)$$
 (Wolffersdorff, 1996).





3D definition for OCR: CAM-CLAY surface.





OCR definition

$$OCR = \frac{p_e}{p_e^+} \tag{13}$$

uniandes

Parameters

Name	Symbol	Units	Test
Compression index	λ	[-]	Oedometric
Swelling index	κ	[-]	Oedometric
Critical friction angle	$arphi_c$	[°]	Triaxial
Viscosity index	I_v	[-]	Oedometric
Reference creep rate	D_r	[-]	Oedometric
Void ratio for 100 kPa	e_{100}	[-]	Oedometric

18 / 48

Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Review of some models:

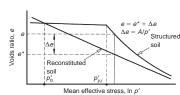
Compression law

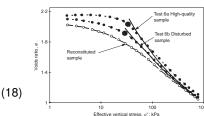
Liu and Carter 1999

$$\Delta e = S\left(\frac{p_{c0}}{p}\right) \ln(p_{c0})$$

Other proposal: Masin (2006)

$$\Delta \ln (1 + e) = \lambda \ln(s)$$





Model from Liu and Carter (1999)

20 / 48

(17)

Review of some models:

Incorporation of a structure variable

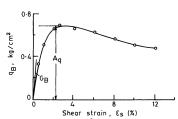
Decomposition of stresses; Nova et.al. (2001), Bauer v Wu (1993)

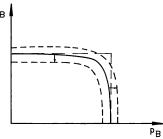
$$\mathbf{T} := \mathbf{T}_R + \mathbf{T}_B \tag{19}$$

Increase in the preconsolidation stress Stallebrass et.al. 2004, Masin, 2006:

$$p_e := sp_e \tag{20}$$

Modification in the bounding surface: Wood et.al. (2000)





Model for bounded component Nova (1999)

April 3, 2009

Degradation law for stucture:

Nova, et.al model

$$f_{B} := \left(\frac{p_{B}}{A_{p}}\right)^{m} + \left(\frac{q_{B}}{A_{q}}\right)^{m} - N$$

$$dN := \frac{\partial N}{\partial p_{B}} K_{B}^{p} d\varepsilon_{v}^{p} - \alpha \frac{\partial N}{\partial q_{B}} q_{B} d\varepsilon_{s}^{p}$$
(21)

Stallebrass, et.al model

$$\dot{s} := \frac{k}{\lambda - \kappa} (s - s_f) \dot{\varepsilon}^{dam}$$

$$\dot{\varepsilon}^{dam} := \sqrt{\dot{\varepsilon}_v^{p2} + \dot{\varepsilon}_s^{p2}}$$
(22)

Masin model

$$\dot{s} := \frac{k}{\lambda - \kappa} (s - s_f) \dot{\varepsilon}^{dam}$$

$$\dot{\varepsilon}^{dam} := \sqrt{\dot{\varepsilon}_v^2 + \frac{A}{1 - A} \dot{\varepsilon}_s^2}$$

Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

First approximation

Modified HVORSLEV stress:

$$p_e^* = sp_e \tag{26}$$

Degradation law for structure³:

$$\dot{s} = -\frac{k}{\lambda}(s-1)\dot{\varepsilon}^{dam} \tag{27}$$

$$\dot{\varepsilon}^{dam} := \sqrt{\dot{\varepsilon}^v + \frac{A}{1 - A} \dot{\varepsilon}^s} \tag{28}$$

with $\dot{\varepsilon}^v$ and $\dot{\varepsilon}^s$:

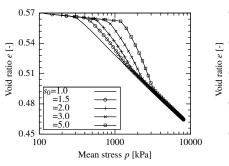
$$\dot{\varepsilon}^v = \operatorname{Tr}\left[\mathbf{D}\right] \qquad \qquad \dot{\varepsilon}^s = \sqrt{\frac{2}{3}} \parallel \mathbf{D}^* \parallel$$
 (29)

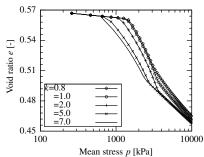
and $\mathbf{D}^* = \mathbf{D} - \frac{1}{3} \hat{\varepsilon}^v \mathbf{1}$ is the deviatoric strain rate.

26 / 48

CelBA

Capabilities of the model



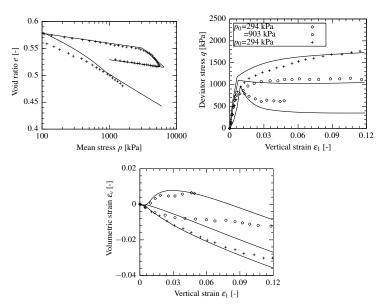


Parameters:

e_{100}	λ	κ	β_R	I_v	D_r	φ_c	\overline{A}	\overline{k}
[-]	[-]	[-]	[-]	[-]	$[s^{-1}]$	[°]	[-]	[-]
0.58	0.022	0.005	0.7	0.018	1.0e-6	22.3	0.5	0.3

27 / 48

Simulations on Marl Clay



New proposal

lacktriangle The new \mathbf{D}^{vis} reads:

$$\mathbf{D}^{vis} := -D_r \hat{\mathbf{B}} \left(\frac{1}{OCR} \right)^{\frac{1}{Iv}} \left(\frac{1}{s} \right)^{\frac{1}{Iv}}$$

Where s follows the degradation law:

$$\dot{s} := -\frac{k}{\lambda}(s-1)\dot{\varepsilon}^{dam}$$

1 The damage function $\dot{\varepsilon}^{dam}$ is:

$$\dot{\varepsilon}^{dam} := \exp\left[-\omega \text{OCR}^*\right] \sqrt{\dot{\varepsilon}^v + \dot{\varepsilon}^s}$$

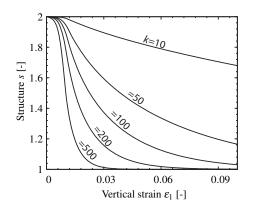
The OCR* is defined as:

$$OCR^* = \left[\frac{\sqrt{3}D_r}{\| -\hat{\mathbf{B}}^{-1} \cdot \mathbf{D} \|} \right]^{-I_v} OCR$$

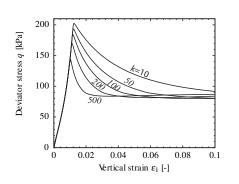
Simulations

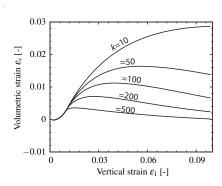
Drained triaxial test, $p_0 = 100$ kPa.

e ₁₀₀	λ	κ	β_R	I_{v}	D_r	φ_c	k	Г	ω	s_0
[-]	[-]	[-]	[-]	[-]	$[s^{-1}]$	[°]	[-]	[-]	[-]	[-]
1.0	0.06	0.006	0.95	0.002	1.0e-5	18	-	0.05	1.0	2.0



Simulations





Factor of barotropy

LIU and CARTER compression law:

$$\Delta e = \Gamma\left(\frac{p_{y,i}}{p}\right) \ln p_{y,i} \tag{39}$$

where,

- \bullet Γ the structure index (Parameter).
- $p_{y,i}$ the initial overconsolidated mean stress

Proposal:

$$\ln\left(\frac{1+e}{1+e_0}\right) = \left(-\kappa + \Gamma \ln(s)\right) \ln\left(\frac{p}{p_r}\right) \tag{40}$$

Factor of barotropy

In rate form:

$$D^{vol} = (-\kappa + \Gamma \ln(s)) + \frac{\dot{s}}{s} \Gamma \ln(p)$$
 (41)

For isotropic compression,

$$\dot{s} = \frac{k}{\lambda}(s-1)D^{vol} \tag{42}$$

The barotropy factor reads:

Factor of barotropy:

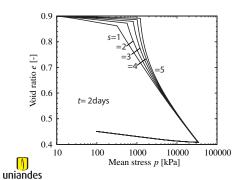
$$f_b := 3p \frac{1 - \frac{\Gamma}{s} \ln(p) \frac{k}{\lambda} (s - 1)}{\left(\kappa - \Gamma \ln(s)\right) \left(1 + \frac{a^2}{3}\right)}$$

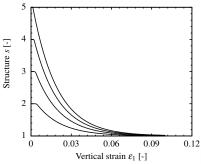
$$\tag{43}$$

Simulations

Isotropic compression test.

e ₁₀₀	λ	κ	β_R	I_v	D_r	φ_c	k	Г	s_0
[-]	[-]	[-]	[-]	[-]	$[s^{-1}]$	[°]	[-]	[-]	[-]
1.0	0.06	0.006	0.95	0.02	1.0e-5	18	5.0d1	6.0e-3	-





Hysteretical elasticity

The delayed deformation ${\bf h}$ is a state variable that follows,

$$\stackrel{\circ}{\mathbf{h}} = \left[\vec{\mathbf{D}} - \operatorname{Tanh}(c\mathbf{h}) \right] \parallel \mathbf{D} \parallel \tag{47}$$

where:

- ullet is the objective rate of delayed deformation,
- $\vec{\mathbf{D}} = \mathbf{D} / \parallel \mathbf{D} \parallel$ is the unit rate of deformation, and
- c is a material parameter.

The rigidity factor f_r is defined as:

$$f_r := A \left(1 - \exp\left(-\frac{\parallel \dot{\mathbf{h}} \parallel}{\parallel \mathbf{D} \parallel} \right) \right)^{\chi} + 1 \tag{48}$$

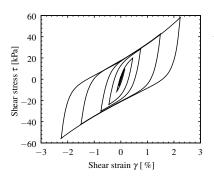
 χ and A are parameters, and $\mathbb{M}=f_r\hat{\mathbb{L}}$

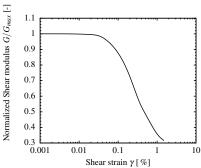
41 / 48

Ciclic triaxial test

Undrained ciclic triaxial test. $p_0 = 100kPa$

			_		ъ			-		-	-	
e_{100}	λ	κ	$^{\beta}R$	Iv	D_{r_1}	φ_c	c	A	χ	k	1.	s_0
[-]	[-]	[-]	[-]	[-]	$[s^{-1}]$	[°]	[-]	[-]	[-]	[-]	[-]	[-]
1.5	0.2	0.025	0.95	0.02	1.0e-5	18	4.0d2	20.0	2.0	2.0d2	3.0e-3	2

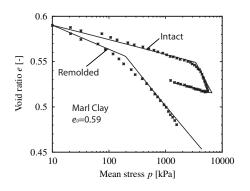




Simulations on Marl Clay

Oedometric test.

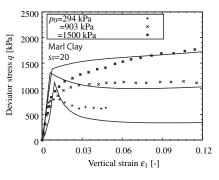
e_{100}	λ	ĸ	β_R	I_v	D_r	φ_c	k	Г	ω	s_0
[-]	[-]	[-]	[-]	[-]	$[s^{-1}]$	[°]	[-]	[-]	[-]	[-]
0.58	0.022	0.0073	0.7	0.018	1.0e-6	18	1.7d1	1.0d-3	8d-3	20

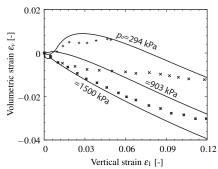


43 / 48

Simulations on Marl Clay

Drained triaxial test, $s_0 = 20$





Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Proposed model

- Mechanical behaviour of structured soils
- Review of Visco-hypoplastic model
- Review of some models
- Proposed model
- Conclusions

Conclusions

Conclusions

- An extension for structured soils has been developed in the hypoplasticity framework.
- The model reproduces viscous effects, and the degradation of structure.
- Structure state variables are defined in a current configuration as the reference configuration.
- It reproduces well the Marl Clay characterized for its high cementation.
- A FEM user routine has been developed.

Limitations

- Does not simulates anisotropy.
- Supposes a unique critical state for remolded an intact material.
- Unaceptable responses envelopes.

Thanks

Acknowledgements:

Prof. Arcesio Lizcano

Grupo de Investigación de Geotecnia UniAndes

http://geotecnia.uniandes.edu.co

48 / 48